United States Patent

US009436785B1

(12) (10) Patent No.: US 9,436,785 B1
Javre et al. 45) Date of Patent: Sep. 6, 2016
(54) HIERARCHICAL PRESET AND RULE 7,546,572 B1* 6/2009 Ballagh HO3K 19/17732
BASED CONFIGURATION OF A 716/138
SYSTEM-ON-CHIP 8,327,309 B2* 12/2012 Stuyt GOIR 31/3710835/?2
8,875,079 B2* 10/2014 Saxon GOGF 17/5072
(71) Applicant: Xilinx, Inc., San Jose, CA (US) 716/105
(72) Inventors: Somdutt Javre, Seoni (IN); Pradeep OTHER PUBLICATIONS
Kumar Mishra, Hyderabad (IN);
Siddharth Rele, Navi Mumbai (IN) Xilinx, Inc., Zyng-7000 All Programmable SoC: Concepts, Tools,
and Techniques (CTT), UG873 (v14.7), Oct. 2, 2013, pp. 1-91,
(73) Assignee: XILINX, INC., San Jose, CA (US) Xilinx, Inc., San Jose, California, USA.
Xilinx, Inc., Zyng-7000 All Programmable SoC: Technical Refer-
(*) Notice: Subject to any disclaimer, the term of this ence Manual, UGS85 (v1.8), Sep. 16, 2014, Chapters 6 and 26, pp.
patent is extended or adjusted under 35 147-212 and pp. 688-696, Xilinx, Inc., San Jose, California, USA.
U.S.C. 154(b) by 63 days.
(®) by Y * cited by examiner
(21) Appl. No.: 14/491,656
(22) Filed: Sep. 19, 2014 Primary Examiner — Nghia Doan
(74) Attorney, Agent, or Firm — Kevin T. Cuenot
(51) Imt. ClL
GO6F 17/50 (2006.01)
(52) US. CL (57) ABSTRACT
CPC GO6F 17/5045 (2013.01); GOGF 2217/02 Hierarchical preset and rule base configuration of a system-
. . (2()?3'01)’ GOGF" 2217/06 (2013.01) on-chip (SOC) includes receiving a user input selecting a
(58) Field of Classification Search first circuit block of the SOC for enablement and determin-
CPC e GOGF 17/5045; GOGF 17/505; GOGF ing, using a processor, a first top level preset according to the
17/5068; GOGEF 17/5072; GOGE 17/5077: user input for the first circuit block. Selected intermediate
’) G06/F 17/5081 presets are determined from a plurality of hierarchically
[SJSPC '1', """ . 71211019 —-107, 11167117’ 3112?1,37741’ 47 ordered presets for the first circuit block. Low level presets
ee application file for complete search history. are automatically determined for the first circuit block
. according to the selected intermediate presets for the first
(56) References Cited circuit block. The low level presets are output, e.g., by

U.S. PATENT DOCUMENTS

7,159,196 B2 * GO6F 17/5045

703/14

1/2007 Anderson

loading them into the SOC.

17 Claims, 11 Drawing Sheets

500

Top level preset X=1

505

y

Preset B="Pin 25"
510

Preset A=10

Preset C=125 MHz
515 520

40

" E
Rules II- . Jl
5

Low Level preset(s)
535

Preset M="calculated
value based on rule”
530

f 545
B="Pin 25" B="Pin 20" B="Pin 14"
Preset D=001 Preset D=010 Preset D=011
550 555 560
Register Register Register
0xF80000100=001 0xF80000100=010 0xF80000100=011
565 570 575

U.S. Patent Sep. 6, 2016 Sheet 1 of 11 US 9,436,785 B1

100
Configuration
Bitstream
130 115 120
125
L
Display Pointing Network .
Ke)élgc())ard Device Device Adapter Vo E;OVICe
235 240 245
y Y
y

¢ \- 215 ¢
Memory Elements
Processor 210

205

Local Memory | | Bulk Storage Device
220 225

(Electronic Design
Automation Application || Preset Data
L 255 260

N
(=]
(@]

FIG. 2

US 9,436,785 B1

Sheet 2 of 11

Sep. 6, 2016

U.S. Patent

20e | o0oe zig 0.€ 89¢ agee 099¢ g99¢ v99€ ¥9g
Anosg dvol a10d 19N 1OW 1On 19N ovLr
y A
08¢
AynoaaiD) Jasn
¥0E
96¢ Aunond bunys jsae 4
8ce asse 0988 a9se vose e | | soopen ol
dvod soelaU| 80BU8U| soelaU| aoBU8U| soepe] | T ~
il IR & I e
mwm vee |, V8re OVLrd fr
T | (oS wa [5 | ~gre
gee W
agve
< J9||ouUOD e 9ee
fowspy [v] yoimg 09vE
alo: h I
r A|_ i o i aove
zze 0z¢e m
zee DO ayoed z1 [> | VOre 0ge
L1 9ce | Y 2 — |\ ove
Hun %00 '
oee %19 v ovpe | Ozve |
vZe . ;
Ll un 81£ NOS 91€ OYl < T 8yve | deve T
josay 08¢ | zpe | vive | veve
0LE 80€
810D 810D Ge H
Z6€ 19)s160y qo0ve ‘
J0)0918 :
ree %ﬁ_o\ﬁ/u vie cie 104109 = vove | L~
o og Nd4 Nd4 0ve
~—9a0¢ 706

\4

(=]
[ap)

U.S. Patent

Sep. 6, 2016 Sheet 3 of 11

400

Receive user input selecting circuit
block for enablement

405

Determine top level preset
according to user input
410

Determine selected intermediate
preset(s) from a plurality of
hierarchically ordered intermediate
preset(s) for the circuit block

415

Conflict? Yes
420

Qutput or provide notification of
conflict
425

Automatically determine low level
preset(s) for the circuit block

according to the selected —

intermediate preset(s)

430

Configure
another circuit block?
435

Yes

Load low level settings into the
system-on-chip

(Done)

FIG. 4

440

US 9,436,785 B1

U.S. Patent Sep. 6, 2016 Sheet 4 of 11 US 9,436,785 B1

00

Top level preset X=1

505
\ 4 h 4 \ 4
Preset B="Pin 25" Preset A=10 Preset C=125 MHz
510 515 520
N e Vi
Rule
\ 4 525
Rules l — l
540 Preset M="calculated
Low Level preset(s) ,
535 value based on rule
530
f 545
v
B="Pin 25" B="Pin 20" B="Pin 14"
Preset D=001 Preset D=010 Preset D=011
550 555 560
A A
Register Register Register
0xF80000100=001 0xF80000100=010 0xF80000100=011
565 570 575

FIG. 5

US 9,436,785 B1

Sheet 5 of 11

Sep. 6, 2016

U.S. Patent

\ Gl9

\ 049

___/ Vi
@meoﬁd R
vava MO | |
AN NVdvd

198814
195814

ajelpaulIB)U|

slelpswIsiU|

[\~ go9

\ 099

\ Ggoa

9 Ol

\ 059

\ 09

\ Ge9

/ / / / /
00 gZi-d

91=H1Q — _ _ — T11dd
MV LY ANO 8 cydddi=NI ﬂmﬁwmrhrv.r_\,_ ¢=0d0sIAId ad ™ T1d—ANO
NIN YNV 8033dS AHO| | =L¥vd AHO ddda Avdvd WIW AYSEYd

Josal WIW Wvvd | | WEW IWvaYd 1059.d josein

195814 1898814 alelpawliaiu|
sjelpauLIsiU| ajelpaLuIayu|
ajeIpsuLIaU| sjelpswIsiu|
y y y

T

SOIAYOW3 zdaad _ -
W=OI X31dIL| | 1=3dAL AYHO M_wmmw__\n,_vm% q
INW WYEVd | | WIW Wvavd J0sa1y
losald losald
ajelpswJau|
ajelpawliaju| a)elpawialu|
VAR N /3 X7

[} .
\umw\
—~

0¢9 \

mvmk

1=3719VYN3 ¥aa Wvdvd
19said [oAe7 do|

U.S. Patent Sep. 6, 2016 Sheet 6 of 11 US 9,436,785 B1

Top Level Preset | 705 Top Level Preset |~ 750
PARAM_ENET_ENABLE=1 PARAM_USB0O_ENABLE=1

v 730 / v

710'\ Intermediate \ Multiplex 10 Preset / Intermediate f755

Preset Ve 735 s 740 Preset
PARAM_GLK_ Intermediate Intermediate PARAM_CLK_
FEQ=125Mhz Preset Preset FEQ=60Mhz

PARAM_MUL PARAM_MUL
TIPLEX_10=28| |TIPLEX_IO=28

.39 .39
715 Y
N Clock Preset Clock Preset
) 760
720 —~ Intermediate Y Intermediate
~ Preset Y Preset
PARAM_IO_E 765 —~d | PARAM_IO_U
NT1_PLL=IOP Notification 7] SB_PLL=I0PL
LL L
Int diat 745
725 . ntermediate Intermediate
- Preset Preset
PARAM_ENT1 770 -~ PARAM_USBO
_DIVISER0=4 | _DIVISERO0=4
PARAM_ENT1 PARAM_USBO
_DIVISER1=6 _DIVISER1=6

FIG. 7

U.S. Patent Sep. 6, 2016 Sheet 7 of 11 US 9,436,785 B1

00

<?xml version="1.0" encoding="IS0O-8859-1"?>
<IDOCTYPE parameters SYSTEM "presets.dtd" PUBLIC "presets">
<presets>
<preset strength="4" name="1" param="alto_enet0_peripheral_enable">
<set param="alto_enet0_enet0_io" value="MIO 16 .. 27"/>
<set param="alto_enet0_peripheral_freqmhz" value="1000 Mbps"/>
<set param="alto_EN_ENETQ" value="1"/>
<set param="alto_enet_reset_valid" value="1"/>
</preset>
<preset strength="7" name="0" param="alto_enet0_peripheral_enable">
<set param="alto_enet0_peripheral_freqmhz" value="1000 Mbps"/>
<disable param="alto_enet0_enet0_io"/>
<disable param="alto_enet0_grp_MDIO_enable"/>
<disable param="alto_enet0_peripheral_freqmhz"/>
</preset>
<preset strength="7" name="0" param="alto_enet0_grp_MDIO_enable">
<disable param="alto_enet0_grp_MDIO_io"/>
</preset>
<preset strength="4 " name="1" param="alto_enet0_grp_MDIO_enable">
<set param="alto_enet0_grp_MDIO_io" value="EMIO"/>
<set param="alto_enet0_internal_mdio" value="1"/>
</preset>
<preset strength="6" name="EMIO" param="alto_enet0_enet0_io">
<set param="alto_enet0_tx_clk_io" value="EMIO"/>
<set param="alto_enet0_txd[3]_io" value="EMIO"/>
<set param="alto_enet0_txd[2]_io" value="EMIO"/>
<set param="alto_enet0_txd[1]_io" value="EMIO"/>
<set param="alto_enet0_txd[0]_io" value="EMIO"/>
<set param="alto_enet0_tx_ctl_io" value="EMIO"/>
<set param="alto_enet0_rx_clk_io" value="EMIO"/>
<set param="alto_enet0_rxd[3] _io" value="EMIO"/>
<set param="alto_enet0_rxd[2] io" value="EMIO"/>
<set param="alto_enet0_rxd[1]_io" value="EMIO"/>
<set param="alto_enet0_rxd[0]_io" value="EMIO"/>
<set param="alto_enet0_rx_ctl_io" value="EMIO"/>
<set param="alto_enet0_grp_MDIO_io" value="EMIO"/>
<set param="alto_enet0_grp_MDIO_enable" value="1"/>
<set param="alto_enet0_internal_eth_mode" value="0"/>
<disable param="alto_enet0_grp_MDIO_enable"/>
<disable param="alto_enet0_grp_MDIO_io"/>
<set param="alto_EN_EMIO_ENETOQ" value="1"/>
<set param="alto_enet0_peripheral_clksrc" value="External"/>
<disable param="alto_enet0_peripheral_clksrc"/>
</preset>
<preset strength="5" name="MIO 16 .. 27" param="alto_enet0_enet0_io">
<set param="alto_enet0_grp_MDIO_io" value="MIO 52 .. 53"/>
<dischoice param="alto_enet0_grp MDIQO_io" value="EMIO"/>
<set param="alto_enet0_tx_clk_io" value="MIO 16"/>

FIG. 8-1

U.S. Patent Sep. 6, 2016 Sheet 8 of 11 US 9,436,785 B1

Co
=)
o

<set param="alto_mio_mio[16] signal" value="tx_clk"/>

<set param="alto_mio_mio[16]_peripheral" value="Enet 0"/>
<set param="alto_mio_mio[16]_signalgroup" value="Enet 0"/>
<set param="alto_preset_mio_16" value="enet0"/>

<set param="alto_enet0_txd[0]_io" value="MIO 17"/>

<set param="alto_mio_mio[17]_signal" value="txd[0]"/>

<set param="alto_mio_mio[17]_peripheral" value="Enet 0"/>
<set param="alto_mio_mio[17]_signalgroup" value="Enet 0"/>
<set param="alto_preset_mio_17" value="enet0"/>

<set param="alto_enet0_txd[1]_io" value="MIO 18"/>

<set param="alto_mio_mio[18]_signal" value="txd[1]"/>

<set param="alto_mio_mio[18]_peripheral" value="Enet 0"/>
<set param="alto_mio_mio[18]_signalgroup" value="Enet 0"/>
<set param="alto_preset_mio_18" value="enet0"/>

<set param="alto_enet0_txd[2] io" value="MIO 19"/>

<set param="alto_mio_mio[19]_signal" value="txd[2]"/>

<set param="alto_mio_mio[19]_peripheral" value="Enet 0"/>
<set param="alto_mio_mio[19]_signalgroup" value="Enet 0"/>
<set param="alto_preset_mio_19" value="enet0"/>

<set param="alto_enet0_txd[3] io" value="MIO 20"/>

<set param="alto_mio_mio[20]_signal" value="txd[3]"/>

<set param="alto_mio_mio[20]_peripheral" value="Enet 0"/>
<set param="alto_mio_mio[20]_signalgroup" value="Enet 0"/>
<set param="alto_preset_mio_20" value="enet0"/>

<set param="alto_enet0_tx_ctl_io" value="MIO 21"/>

<set param="alto_mio_mio[21]_signal" value="tx_ctI"/>

<set param="alto_mio_mio[21]_peripheral" value="Enet 0"/>
<set param="alto_mio_mio[21]_signalgroup" value="Enet 0"/>
<set param="alto_preset_mio_21" value="enet0"/>

<set param="alto_enet0_rx_clk_io" value="MIO 22"/>

<set param="alto_mio_mio[22]_signal" value="rx_clk"/>

<set param="alto_mio_mio[22]_peripheral" value="Enet 0"/>
<set param="alto_mio_mio[22]_signalgroup" value="Enet 0"/>
<set param="alto_preset_mio_22" value="enet0"/>

<set param="alto_enet0_rxd[0]_io" value="MIO 23"/>

<set param="alto_mio_mio[23]_signal" value="rxd[0]"/>

<set param="alto_mio_mio[23]_peripheral" value="Enet 0"/>
<set param="alto_mio_mio[23] signalgroup" value="Enet 0"/>
<set param="alto_preset_mio_23" value="enet0"/>

<set param="alto_enet0_rxd[1]_io" value="MIO 24"/>

<set param="alto_mio_mio[24] signal" value="rxd[1]"/>

<set param="alto_mio_mio[24]_peripheral" value="Enet 0"/>
<set param="alto_mio_mio[24] signalgroup" value="Enet 0"/>
<set param="alto_preset_mio_24" value="enet0"/>

<set param="alto_enet0_rxd[2]_io" value="MIO 25"/>

<set param="alto_mio_mio[25]_signal" value="rxd[2]"/>

<set param="alto_mio_mio[25]_peripheral" value="Enet 0"/>
<set param="alto_mio_mio[25]_signalgroup" value="Enet 0"/>

FIG. 8-2

U.S. Patent Sep. 6, 2016 Sheet 9 of 11 US 9,436,785 B1

00

<set param="alto_preset_mio_25" value="enet0"/>
<set param="alto_enet0_rxd[3]_io" value="MIO 26"/>
<set param="alto_mio_mio[26]_signal" value="rxd[3]"/>
<set param="alto_mio_mio[26]_peripheral" value="Enet 0"/>
<set param="alto_mio_mio[26]_signalgroup" value="Enet 0"/>
<set param="alto_preset_mio_26" value="enet0"/>
<set param="alto_enet0_rx_ctl_io" value="MIO 27"/>
<set param="alto_mio_mio[27]_signal" value="rx_ctl"/>
<set param="alto_mio_mio[27]_peripheral" value="Enet 0"/>
<set param="alto_mio_mio[27]_signalgroup" value="Enet 0"/>
<set param="alto_preset_mio_27" value="enet0"/>
<set param="alto_enet0_internal_eth_mode" value="1"/>
</preset>
<preset strength="5" name="EMIQO" param="alto_enet0_grp_MDIO_io">
<set param="alto_enet0_mdc_io" value="EMIO"/>
<set param="alto_enet0_mdio_io" value="EMIO"/>
</preset>
<preset strength="5" name="MIO 52 .. 53" param="alto_enet0_grp MDIO_io">
<set param="alto_enet0_mdc_io" value="MIO 52"/>
<set param="alto_mio_mio[52]_signal" value="mdc"/>
<set param="alto_mio_mio[52]_peripheral" value="Enet 0"/>
<set param="alto_mio_mio[52]_signalgroup" value="MDIO"/>
<set param="alto_preset_mio_52" value="mdio0"/>
<set param="alto_enet0_mdio_io" value="MIO 53"/>
<set param="alto_mio_mio[53]_signal" value="mdio"/>
<set param="alto_mio_mio[53]_peripheral" value="Enet 0"/>
<set param="alto_mio_mio[53]_signalgroup" value="MDIO"/>
<set param="alto_preset_mio_53" value="mdio0"/>
</preset>
<preset name="1000 Mbps" param="alto_enet0_peripheral_fregmhz">
<set param="alto_enet0_internal_freqmhz" value="125"/>
<set param="alto_enet(_internal_divisor" value="1"/>
</preset>
<preset name="100 Mbps" param="alto_enet0_peripheral_freqmhz">
<set param="alto_enet0_internal_freqmhz" value="25"/>
<set param="alto_enet0_internal_divisor" value="5"/>
</preset>
<preset name="10 Mbps" param="alto_enet0_peripheral_freqmhz">
<set param="alto_enet0_internal_freqmhz" value="2.5"/>
<set param="alto_enet0_internal_divisor" value="50"/>
</preset>
<preset name="1000 Mbps" param="alto_act_enet0_peripheral freqmhz"> </preset>
<preset name="100 Mbps" param="alto_act_enet0_peripheral_freqmhz"> </preset>
<preset name="10 Mbps" param="alto_act _enet0_peripheral_freqmhz"> </preset>
<preset strength="6" name="enet0" param="alto_preset_mio_16">
<set param="alto_slcr_MIO_PIN_16_L0_SEL" value="1"/>
<set param="alto_slcr_MIO_PIN_16_L1_SEL" value="0"/>
<set param="alto_slcr_MIO_PIN_16_L2 SEL" value="0"/>

FIG. 8-3

U.S. Patent Sep. 6, 2016 Sheet 10 of 11 US 9,436,785 B1

00

<set param="alto_slcr_MIO_PIN_16_L3 SEL" value="0"/>
<set param="alto_mio_16_direction" value="out"/>
<disable param="alto_mio_16_direction"/>

</preset>

<preset strength="6" name="enet0" param="alto_preset_mio_17">
<set param="alto_slcr_MIO_PIN_17_L0_SEL" value="1"/>
<set param="alto_slcr_MIO_PIN_17_L1_SEL" value="0"/>
<set param="alto_slcr_MIO_PIN_17_L2_ SEL" value="0"/>
<set param="alto_slcr_MIO_PIN_17_L3 SEL" value="0"/>
<set param="alto_mio_17_direction" value="out"/>
<disable param="alto_mio_17_direction"/>

</preset>

<preset strength="6" name="enet0" param="alto_preset_mio_18">
<set param="alto_slcr_MIO_PIN_18_L0O_SEL" value="1"/>
<set param="alto_slcr_MIO_PIN_18_L1_SEL" value="0"/>
<set param="alto_slcr_MIO_PIN_18_L2 SEL" value="0"/>
<set param="alto_slcr_MIO_PIN_18_L3 SEL" value="0"/>
<set param="alto_mio_18_direction" value="out"/>
<disable param="alto_mio_18_direction"/>

</preset>

<preset strength="6" name="enet0" param="alto_preset_mio_19">
<set param="alto_slcr_MIO_PIN_19_L0_SEL" value="1"/>
<set param="alto_slcr_MIO_PIN_19_L1_SEL" value="0"/>
<set param="alto_slcr_MIO_PIN_19_L2 SEL" value="0"/>
<set param="alto_slcr_MIO_PIN_19_L3 SEL" value="0"/>
<set param="alto_mio_19_direction" value="out"/>
<disable param="alto_mio_19_direction"/>

</preset>

<preset strength="6" name="enet0" param="alto_preset_mio_20">
<set param="alto_slcr_MIO_PIN_20_L0_SEL" value="1"/>
<set param="alto_slcr_MIO_PIN_20_L1_SEL" value="0"/>
<set param="alto_slcr_MIO_PIN_20_L2_ SEL" value="0"/>
<set param="alto_slcr_MIO_PIN_20_L3 SEL" value="0"/>
<set param="alto_mio_20_direction" value="out"/>
<disable param="alto_mio_20_direction"/>

</preset>

<preset strength="6" name="enet0" param="alto_preset_mio_21">
<set param="alto_slcr_MIO_PIN_21_L0_SEL" value="1"/>
<set param="alto_slcr_MIO_PIN_21_L1_SEL" value="0"/>
<set param="alto_slcr_MIO_PIN_21_L2 SEL" value="0"/>
<set param="alto_slcr_MIO_PIN_21_L3 SEL" value="0"/>
<set param="alto_mio_21_direction" value="out"/>
<disable param="alto_mio_21_direction"/>

</preset>

<preset strength="6" name="enet0" param="alto_preset_mio_22">
<set param="alto_slcr_MIO_PIN_22 L0 _SEL" value="1"/>
<set param="alto_slcr_MIO_PIN_22 L1_SEL" value="0"/>
<set param="alto_slcr_MIO_PIN_22 |2 SEL" value="0"/>

FIG. 8-4

U.S. Patent Sep. 6, 2016 Sheet 11 of 11 US 9,436,785 B1

800

<set param="alto_slcr_MIO_PIN_22 |3 SEL" value="0"/>
<set param="alto_mio_22_direction" value="in"/>
<disable param="alto_mio_22_direction"/>

</preset>

<preset strength="6" name="enet0" param="alto_preset_mio_23">
<set param="alto_slcr_MIO_PIN_23 L0 _SEL" value="1"/>
<set param="alto_slcr_MIO_PIN_23 |1 _SEL" value="0"/>
<set param="alto_slcr_MIO_PIN_23 |2 SEL" value="0"/>
<set param="alto_slcr_MIO_PIN_23 |3 SEL" value="0"/>
<set param="alto_mio_23_direction" value="in"/>
<disable param="alto_mio_23_direction"/>

</preset>

<preset strength="6" name="enet0" param="alto_preset_mio_24">
<set param="alto_slcr_MIO_PIN_24 | 0_SEL" value="1"/>
<set param="alto_slcr_MIO_PIN_24 |1 _SEL" value="0"/>
<set param="alto_slcr_MIO_PIN_24 |2 SEL" value="0"/>
<set param="alto_slcr_MIO_PIN_24 |3 SEL" value="0"/>
<set param="alto_mio_24 direction" value="in"/>
<disable param="alto_mio_24_direction"/>

</preset>

<preset strength="6" name="enet0" param="alto_preset_mio_25">
<set param="alto_slcr_MIO_PIN_25 1 0_SEL" value="1"/>
<set param="alto_slcr_MIO_PIN_25 | 1_SEL" value="0"/>
<set param="alto_slcr_MIO_PIN_25 |2 SEL" value="0"/>
<set param="alto_slcr_MIO_PIN_25 |3 SEL" value="0"/>
<set param="alto_mio_25 direction" value="in"/>
<disable param="alto_mio_25_ direction"/>

</preset>

<preset strength="6" name="enet0" param="alto_preset_mio_26">
<set param="alto_slcr_MIO_PIN_26 L0 _SEL" value="1"/>
<set param="alto_slcr_MIO_PIN_26 L1 _SEL" value="0"/>
<set param="alto_slcr_MIO_PIN_26 |2 SEL" value="0"/>
<set param="alto_slcr_MIO_PIN_26 |3 SEL" value="0"/>
<set param="alto_mio_26_direction" value="in"/>
<disable param="alto_mio_26_direction"/>

</preset>

<preset strength="6" name="enet0" param="alto_preset_mio_27">
<set param="alto_slcr_MIO_PIN_27 L 0_SEL" value="1"/>
<set param="alto_slcr_MIO_PIN_27 |1 _SEL" value="0"/>
<set param="alto_slcr_MIO_PIN_27 |2 SEL" value="0"/>
<set param="alto_slcr_MIO_PIN_27 |3 SEL" value="0"/>
<set param="alto_mio_27_direction" value="in"/>
<disable param="alto_mio_27_direction"/>

</preset>

</presets>

FIG. 8-5

US 9,436,785 Bl

1
HIERARCHICAL PRESET AND RULE
BASED CONFIGURATION OF A
SYSTEM-ON-CHIP

TECHNICAL FIELD

This disclosure relates to integrated circuits (ICs) and,
more particularly, to configuring a system-on-chip type of IC
for operation using hierarchical presets and rules.

BACKGROUND

A system-on-chip (SOC) is an integrated circuit (IC) that
includes a plurality of different subsystems. The subsystems
are included within a single chip substrate. The subsystems
of the SOC are integrated to work cooperatively with one
another. One example of an SOC is a chip level implemen-
tation of a computer or other data processing system. For
example, the SOC may include a processor that executes
program code such as an operating system and/or one or
more applications. The processor operates cooperatively
with one or more of the other on-chip subsystems. The other
subsystems may be digital circuits, analog circuits, mixed-
signal circuits, or the like. Exemplary subsystems that may
be included within an SOC and operate cooperatively with
a processor may include, but are not limited to, wireless
transceivers, signal processors, CODECs, memory, memory
controllers, 1/O peripherals, and the like.

The subsystems of the SOC are often varied and special-
ized. Each subsystem typically has a plurality of control
registers that control the functionality and/or behavior of
that subsystem. In the usual case, a subsystem has hundreds
or thousands of different control registers. Taking a system-
wide view, the number of control registers of an SOC may
be overwhelming to a user attempting to implement a circuit
design therein.

SUMMARY

A method includes receiving a user input selecting a first
circuit block of a system-on-chip (SOC) for enablement,
determining, using a processor, a first top level preset
according to the user input for the first circuit block,
determining selected intermediate presets from a plurality of
hierarchically ordered presets for the first circuit block, and
automatically determining low level presets for the first
circuit block according to the selected intermediate presets
for the first circuit block. The low level presets are output,
e.g., by loading them into the SOC.

A system includes a processor programmed to initiate
executable operations. The executable operations include
receiving a user input selecting a first circuit block of an
SOC for enablement, determining a first top level preset
according to the user input for the first circuit block,
determining selected intermediate presets from a plurality of
hierarchically ordered presets for the first circuit block, and
automatically determining low level presets for the first
circuit block according to the selected intermediate presets
for the first circuit block. The low level presets are output,
e.g., by loading them into the SOC.

A non-transitory computer-readable storage medium has
instructions stored thereon which, when executed by a
processor, perform a method. The method includes receiving
a user input selecting a first circuit block of an SOC for
enablement, determining, using a processor, a first top level
preset according to the user input for the first circuit block,
determining selected intermediate presets from a plurality of

10

20

40

45

60

2

hierarchically ordered presets for the first circuit block,
automatically determining low level presets for the first
circuit block according to the selected intermediate presets
for the first circuit block, and outputting the low level
presets, e.g., by loading them into the SOC.

This Summary section is provided merely to introduce
certain concepts and not to identify any key or essential
features of the claimed subject matter. Other features of the
inventive arrangements will be apparent from the accompa-
nying drawings and from the following detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

The inventive arrangements are illustrated by way of
example in the accompanying drawings. The drawings,
however, should not be construed to be limiting of the
inventive arrangements to only the particular implementa-
tions shown. Various aspects and advantages will become
apparent upon review of the following detailed description
with reference to the drawings.

FIG. 1 is a block diagram illustrating an exemplary
development environment.

FIG. 2 is a block diagram illustrating an exemplary data
processing system.

FIG. 3 is a block diagram illustrating an exemplary
integrated circuit (IC).

FIG. 4 is a flow chart illustrating an exemplary method of
determining a processor system configuration for a system-
on-chip type of IC.

FIG. 5 is a block diagram illustrating a portion of an
exemplary preset hierarchy.

FIG. 6 is a block diagram illustrating a portion of another
exemplary preset hierarchy.

FIG. 7 is a block diagram illustrating a conflict between
portions of two exemplary preset hierarchies.

FIGS. 8-1 through 8-5, taken together, illustrate an
example of a preset hierarchy specified in eXtensible
Markup Language (XML) format.

DETAILED DESCRIPTION

While the disclosure concludes with claims defining novel
features, it is believed that the various features described
within this disclosure will be better understood from a
consideration of the description in conjunction with the
drawings. The process(es), machine(s), manufacture(s) and
any variations thereof described herein are provided for
purposes of illustration. Specific structural and functional
details described within this disclosure are not to be inter-
preted as limiting, but merely as a basis for the claims and
as a representative basis for teaching one skilled in the art to
variously employ the features described in virtually any
appropriately detailed structure. Further, the terms and
phrases used within this disclosure are not intended to be
limiting, but rather to provide an understandable description
of the features described.

This disclosure relates to integrated circuits (ICs) and,
more particularly, to configuring a system-on-chip (SOC)
type of IC for operation using hierarchical presets and rules.
SOC type ICs typically undergo an initialization process
during startup or boot that requires configuration of various
circuit blocks. These circuit blocks are located within a
processor system of the SOC. As an example, the processor
system may include thousands of control registers used to
store values of configuration parameters for the circuit
blocks included therein.

US 9,436,785 Bl

3

As part of the circuit design process, a user must deter-
mine the correct values to be loaded into the control registers
during initialization of the SOC. Typically users maintain
many large configuration files, where each configuration file
stores values for the registers of the processor system needed
to implement a particular processor system configuration or
particular application. The user may select a configuration
file considered related to the desired processor system
configuration and manually adapt that processor system
configuration to one that is desired. This process is often
tedious and error prone.

In accordance with the inventive arrangements described
herein, a user is guided through configuration of circuit
blocks of the processor system of the SOC using one or more
sets of hierarchically ordered presets. One or more rules are
associated with the presets. When applied, the rules identify
further presets at deeper levels of the hierarchy and, as such,
are used to navigate the hierarchy. The hierarchy is traversed
until low level presets are reached. Low level presets are end
points, or leaf nodes, of the hierarchy. Low level presets
specify the actual values, or configuration bits, that are to be
written to the appropriate control registers of processor
system circuit blocks to achieve the desired SOC configu-
ration. In traversing the hierarchy, conflicting circuit block
configurations also may be detected.

The inventive arrangements described herein may be
implemented as a method or process performed by a data
processing system for determining a processor system con-
figuration. In another aspect, the inventive arrangements
may be implemented as a data processing system having a
processor. The processor, upon executing program code,
generates a processor system configuration. In still another
aspect, the inventive arrangements may be implemented as
a non-transitory computer-readable storage medium storing
program code that, when executed, causes a processor
and/or a system to perform and/or initiate a method or
process of determining a processor system configuration.

For purposes of simplicity and clarity of illustration,
elements shown in the figures have not necessarily been
drawn to scale. For example, the dimensions of some of the
elements may be exaggerated relative to other elements for
clarity. Further, where considered appropriate, reference
numbers are repeated among the figures to indicate corre-
sponding, analogous, or like features.

FIG. 1 is a block diagram illustrating an exemplary
development environment (environment) 100. As pictured,
environment 100 includes a data processing system 105.
Data processing system 105, for example, may be imple-
mented as a computer system or the like. Data processing
system 105 is coupled to a target platform 115 through a
communication link 125.

Target platform 115 may be implemented as a circuit
board such as a printed circuit board having circuitry imple-
mented thereon. Target platform 115 further may be
included within a larger system. Target platform 115 may
include a connector that couples to communication link 125.
The connector may be coupled, using circuitry of target
platform 115, to an IC 120. IC 120 is coupled to target
platform 115 using a socket, a receptacle, another mounting
technique such as soldering IC 120 directly to target plat-
form 115, or the like. In any case, IC 120 couples to
communication link 125 through target platform 115. In one
aspect, IC 120 is a programmable IC. In another aspect, IC
120 is a system-on-chip (SOC).

As noted, data processing system 105 is coupled to target
platform 115 through communication link 125. Communi-
cation link 125 may be implemented as any of a variety of

25

30

40

45

4

different wired and/or wireless connections. Exemplary
wired implementations of communication link 125 include,
but are not limited to, point-to-point Ethernet, Universal
Serial Interconnect (USB), FireWire (IEEE 1394 interface),
or the like. Exemplary wireless implementations of commu-
nication link 125 include, but are not limited to, Bluetooth®,
Wi-Fi®, or the like. In the case of a wireless implementation
of communication link 125, the connector of target platform
115 may be implemented as a wireless transceiver. The
exemplary communication links noted within this disclosure
are provided for purposes of illustration only and not
intended as limitations.

In operation, a user works through data processing system
105 and communicates with IC 120. Data processing system
105, for example, under the control of a user may generate
a processor system configuration. In one aspect, the proces-
sor system configuration may be included in a configuration
bitstream 130 also generated by system 105. System 105
sends configuration bitstream 130 to IC 120. Responsive to
loading configuration bitstream 130, IC 120 loads the pro-
cessor system configuration into control registers of the
processor system and implements a user-specified circuit
design. The processor system configuration specifies various
operational parameters determined by data processing sys-
tem 105 that are necessary for IC 120 to function properly.
In another aspect, system 105 may send only the processor
system configuration to IC 120, which may then be loaded
into the control registers of the processor system of IC 120.

FIG. 2 is a block diagram illustrating an exemplary
implementation of data processing system (system) 105 of
FIG. 1. System 105 includes at least one processor, e.g., a
central processing unit (CPU), 205 coupled to memory
elements 210 through a system bus 215 or other suitable
circuitry. System 105 stores program code within memory
elements 210. Processor 205 executes the program code
accessed from memory elements 210 via system bus 215. In
one aspect, system 105 is implemented as a computer or
other data processing system that is suitable for storing
and/or executing program code. It should be appreciated,
however, that system 105 can be implemented in the form of
any system including a processor and memory that is
capable of performing the functions described within this
disclosure.

Memory elements 210 include one or more physical
memory devices such as, for example, a local memory 220
and one or more bulk storage devices 225. Local memory
220 refers to random access memory (RAM) or other
non-persistent memory device(s) generally used during
actual execution of the program code. Bulk storage device
225 may be implemented as a hard disk drive (HDD), solid
state drive (SSD), or other persistent data storage device.
System 105 may also include one or more cache memories
(not shown) that provide temporary storage of at least some
program code in order to reduce the number of times
program code must be retrieved from bulk storage device
225 during execution.

Input/output (1/0) devices such as a keyboard 230, a
display device 235, and a pointing device 240 may option-
ally be coupled to system 105. The /O devices may be
coupled to system 105 either directly or through intervening
1/O controllers. A network adapter 245 may also be coupled
to system 105 to enable system 105 to become coupled to
other systems, computer systems, remote printers, and/or
remote storage devices through intervening private or public
networks. Modems, cable modems, Ethernet cards, and
wireless transceivers are examples of different types of
network adapter 245 that may be used with system 105.

US 9,436,785 Bl

5

System 105 further may be coupled to an I/O device 250,
through which system 105 may communicate with target
platform 115 and/or IC 120.

As pictured in FIG. 2, memory elements 210 store an
electronic design automation (EDA) application 255. EDA
application 255, being implemented in the form of execut-
able program code, is executed by system 105. As such,
EDA application 255 is considered an integrated part of
system 105.

EDA application 255 utilizes preset data 260 to determine
values for control registers within a processor system of an
SOC. Preset data 260 includes one or more hierarchies of
presets, wherein each hierarchy corresponds to a particular
processor system feature and/or processor system circuit
block. Preset data 260 further includes one or more rules that
may be associated with various ones of the presets in the
hierarchies included therein. EDA application 255, preset
data 260, and any data items used, generated, and/or oper-
ated upon by system 105 are functional data structures that
impart functionality when employed as part of system 105 or
when such elements, including derivations thereof, are
loaded into an IC such as a programmable IC.

FIG. 3 is a block diagram illustrating an exemplary IC
300. IC 300 may be implemented using any of a variety of
different architectures that include a processor system and
programmable circuitry. As illustrated, IC 300 includes a
processor system 302 coupled to a programmable circuitry
304. FIG. 3 is illustrates one example of an SOC type of IC
for which system 105 may determine processor system
configurations.

In the example shown in FIG. 3, processor system 302 is
illustrated as occupying approximately two-thirds of the die
of IC 300, while programmable circuitry 304 is shown as
occupying approximately one-third of the same die. FIG. 3
is not, however, intended to be a scale representation of IC
300. Rather, FIG. 3 is provided for purposes of illustration
and is not intended as a limitation of the inventive arrange-
ments described within this disclosure.

In general, processor system 302 is implemented as a
hard-wired system within IC 300. To the extent that various
components or modules within processor system 302 are
coupled by lines, e.g., signal or communication links, that
have arrows, such arrows are intended to illustrate the
direction or flow of control. In this regard, a signal illustrated
as a line with a directional arrow generally indicates that
control over the signal is exerted by the source component
from which the arrow emanates rather than the target com-
ponent to which the arrow points. The arrows, in general, are
not intended to indicate one-way flow of data or direction-
ality of the signal. Signals may be implemented as bi-
directional signals or communication links despite the pres-
ence of the directional arrow.

Within this specification, the same reference characters
are used to refer to terminals, signal lines, wires, and their
corresponding signals. In this regard, the terms “signal,”
“wire,” “connection,” “terminal,” and “pin” may be used
interchangeably from time-to-time within the this specifica-
tion. It also should be appreciated that the terms “signal,”
“wire,” or the like may represent one or more signals, e.g.,
the conveyance of a single bit through a single wire or the
conveyance of multiple parallel bits through multiple par-
allel wires. Further, each wire or signal, as noted, may
represent bi-directional communication between two, or
more, components connected by that signal or wire as the
case may be.

As shown, processor system 302 may include a core
complex 306. Core complex 306 may include cores 308 and

25

30

40

45

50

65

6

310, floating point units (FPUs) 312 and 314, an interrupt
request unit (IRQ) 316, and a snoop control unit (SCU) 318.
Each of cores 308 and 310 may include a level 1 (L1) cache
(not shown) embedded therein. While any of a variety of
different types of processor cores capable of executing
program code and/or FPUs, e.g., math co-processors or DSP
units, may be used, in one example, cores 308 and 310 each
may be implemented as an ARM Cortex™-A9 type of
processor core with each core having a 32 KB instruction
cache and a 32 KB data cache. FPUs 312 and 314 may be
implemented in the form of NEON™ media and/or floating
point processing engines capable of providing 128-bit vec-
tor-based DSP functions. The ARM Cortex™-A9 processor
cores and the NEON™ media and/or floating point process-
ing engines are available from ARM Ltd of Cambridge, UK
(ARM).

While illustrated as a dual core or a multi-core system, in
another example, core complex 306 may include a single
core that can execute program code. In that case, core
complex 306 may include the single core or processor
coupled to IRQ 316 and SCU 318. Further, FPUs 312 and
314 need not be included, though a single FPU unit may be
included and coupled to the single core if desired.

Referring again to FIG. 3, core complex 306 is coupled to
various processor hardware resources such as a level 2 (L2)
cache 320 and an on-chip memory (OCM) 322. [.2 cache
320 may be implemented as a 256 KB memory. OCM 322
may also be implemented as a 256 KB memory. Cores 308
and 310 and FPUs 312 and 314 may directly access 1.2 cache
320 and OCM 322. In general, OCM 322 provides local
memory that is available to processor system 302 and/or to
programmable circuitry 304, e.g., circuits implemented
within programmable circuitry 304. By comparison, 1.2
cache 320, which is also a memory, functions as a cache for
processor system 302. Accordingly, [.2 cache 320 may store
small blocks or portions of data, e.g., 256 bits, which are
effectively copies of data bits stored in RAM, e.g., execution
memory off-chip. If, for example, a read request is issued for
data stored in L2 cache 320, the data can be read from L2
cache 320 as opposed to being retrieved from the RAM.

Processor system 302 may include further hardware pro-
cessor resources such as a reset unit 324, a clock unit 326,
and a memory controller 328. Reset unit 324 may receive
one or more signals originating from a source external to IC
300, e.g., signal 330. Signal 330 may instruct reset unit 324
to reset processor system 302 and/or one or more or all of the
components within processor system 302. Reset unit 324
further can receive signals requesting powering on or off of
programmable circuitry 304.

Clock unit 326 can receive one or more reference signals,
e.g., signal 332, from a source external to IC 300. Clock unit
326, for example, may be implemented as, or include,
phase-lock loop circuitry capable of synchronizing to
received signal 332. Clock unit 326 may generate one or
more clock signals of one or more different frequencies that
may be distributed throughout processor system 302 (not
shown). Further, clock unit 326 may generate one or more
clock signals of one or more different frequencies that can be
distributed to programmable circuitry 304 for use by circuits
implemented therein.

Memory controller 328 may be implemented to commu-
nicate with one or more different types of RAMs located
external to IC 300, e.g., “off-chip.” For example, memory
controller 328 may be implemented to access, e.g., read
and/or write, various types of memory including, but not
limited to, Dual Data Rate (DDR) 2, DDR3, Low Power
(LP) DDR2 types of memory, whether 16-bit, 32-bit, 16-bit

US 9,436,785 Bl

7

with ECC, etc. The list of different memory types with
which memory controller 328 is able to communicate is
provided for purposes of illustration only and is not intended
as a limitation or to be exhaustive.

Processor system 302 may also include hardware proces-
sor resources such a direct memory access (DMA) interface
334 that is coupled to a core switch 336 and to program-
mable circuitry 304. Processor system 302 further includes
a memory switch 338 type of hardware processor resource
that couples to one of interfaces 356, i.c., interface 356D, to
be described within this specification in greater detail, OCM
322, and memory controller 328.

Core switch 336 routes signals among various compo-
nents of processor system 302 as shown. In one aspect, core
switch 336 may be coupled directly to an internal bus of
processor system 302 (not shown). In such an embodiment,
each other component within processor system 302 that
connects with core switch 336 may be coupled to core
switch 336 through the internal bus. For example, other
processor hardware resources such as /O devices (e.g.,
interfaces) 340, 342, 346, and 348 each may couple to core
switch 336 via the internal bus. The internal bus can be
implemented as any of a variety of different buses such as,
for example, an Advanced Peripheral Bus (APB), or the like.

As noted, processor system 302 may include hardware
processor resources such as one or more different types of
1/0 devices or interfaces. Processor system 302 may provide
flash memory type I/O devices, higher performance 1/O
devices, lower performance interfaces, debugging 1/O
devices, and/or RAM 1/O devices. The RAM I/O devices,
i.e., memory controller 328, have been described within this
specification.

Regarding additional types of I/O devices, processor
system 302 may include one or more flash memory inter-
faces 340 illustrated as 340A and 340B. For example, one or
more of flash memory interfaces 340 can be implemented as
a Quad-Serial Peripheral Interface (QSPI) configured for
4-bit communication. One or more of flash memory inter-
faces 340 may be implemented as a parallel 8-bit NOR/
SRAM type of interface. One or more of flash memory
interfaces 340 may be implemented as a NAND interface
configured for 8-bit and/or or 16-bit communication. It
should be appreciated that the particular interfaces described
are provided for purposes of illustration and not limitation.
Other interfaces having different bit widths can be used.

Processor system 302 can include one or more of 1/O
devices 342 providing a higher level of performance than
1/0 devices 340. Each of I/O devices 342A-342C may be
coupled to a DMA controller 344A-344C respectively. For
example, one or more of /O devices 342 may be imple-
mented as a Universal Serial Bus (USB) type of interface.
One or more of /O devices 342 may be implemented as a
gigabit Ethernet type of interface. One or more of I/O
devices 342 may be implemented as a Secure Digital (SD)
type of interface.

Processor system 302 can include one or more I/O devices
346 such as /O devices 346A-346D that provide a lower
level of performance than I/O devices 342. For example, one
or more of /O devices 346 may be implemented as a
General Purpose 1/0 (GPIO) type of interface. One or more
of 1/0 devices 346 may be implemented as a Universal
Asynchronous Receiver/Transmitter (UART) type of inter-
face. One or more of 1/O devices 346 may be implemented
in the form of a Serial Peripheral Interface (SPI) bus type of
interface. One or more of I/O devices 346 may be imple-
mented in the form of a Controller-Area-Network (CAN)
type of interface and/or an I°C type of interface. One or more

20

25

40

45

55

8

of 1/O devices 346 may also be implemented in the form of
a Triple Timer Counter (TTC) and/or a Watchdog Timer
(WDT) type of interface.

Processor system 302 may include one or more debug I/O
devices 348 such as processor JTAG (PJTAG) port or
interface 348 A and a trace interface 348B. PJTAG port 348A
may provide an external debug interface for processor
system 302. Trace interface 348B may provide a port to
receive debug, e.g., trace, information from programmable
circuitry 304, a port to send debugging data of processor
system 302 out to programmable circuitry 304, and a cross
trigger port. The cross trigger port allows circuitry within
programmable circuitry 304 to trigger debug functions such
as trace within processor system 302. Similarly, processor
system 302 can initiate debug functions within circuits
implemented within programmable circuitry 304.

As shown, each of I/O devices 340, 342, 346, and 348
may be coupled to a multiplexer 350. Multiplexer 350
provides a plurality of outputs that may be directly routed or
coupled to external pins of IC 300, e.g., balls of the package
within which IC 300 is disposed. For example, a plurality of
1/O pins of IC 300, e.g., 53 pins, may be shared among
interfaces 340, 342, 346, and 348. A user may configure
multiplexer 350, as part of processor system 302, to select
which of interfaces 340-348 are to be used and, therefore,
coupled to I/O pins of IC 300 via multiplexer 350.

As shown, signals that couple I/O devices 342-348 to
multiplexer 350 may also be coupled to a fabric multiplexer
input/output (FMIO) interface 352. Accordingly, based upon
user configuration of IC 300 and, more particularly, proces-
sor system 302, any one of [/O devices 342, 346, and/or 348
may be coupled to programmable circuitry 304 of IC 300 via
FMIO interface 352. FMIO interface 352, for example, may
include a configurable switch for each signal line coupled
thereto allowing the signal line to be selectively coupled to
programmable circuitry 304 depending upon the state of that
switch. FMIO interface 352, and the switches included
therein, can be configured as part of processor system 302,
e.g., via control registers 354, to determine which signals
pass from I/O devices 342-348 to programmable circuitry
304. This allows data communicated from any one of
interfaces 342-348 to be routed to circuitry within program-
mable circuitry 304 for further processing and/or monitor-
ing. Data received via one or more of the 1/O pins coupled
to I/O devices 342, 346, and 348 may be routed to program-
mable circuitry 304 for further processing through one or
more of interfaces 356.

FMIO interface 352 allows data that is output from I/O
devices 342, 346, and 348 to be provided to one or more of
the I/O pins, to selected circuits implemented within pro-
grammable circuitry 304, e.g., user circuitry 380, or to both
one or more /O pins concurrently with selected circuits
implemented within programmable circuitry 304. It should
be appreciated that to couple to FMIO interface 352, circuits
implemented within programmable circuitry 304 must be
configured to do so through the loading of configuration data
to form or implement the physical circuitry.

In an embodiment, each of I/O devices 340, 342, 346, and
348 may be configured to generate an interrupt signal
illustrated as signal 390. For example, each of /O devices
340A-340B, 342A-342C, 346A-346D, and 348A-348B may
be configured to generate an interrupt on signal 390. As
shown, signal 390 couples to IRQ 316 of core complex 306
and is also coupled directly to programmable circuitry 304.
Interrupt signal 390, being located within processor system
302, is hard-wired, e.g., fixed wiring. Accordingly, interrupts
generated by any of I/O devices 340-348 may be provided

US 9,436,785 Bl

9

to core complex 306 and/or to programmable circuitry 304
thereby facilitating use of /O devices 340-348 by either
programmable circuitry 304 and/or core complex 306. An
interrupt from each of 1/O devices 340-348, for example, can
be provided concurrently to IRQ 316 and to programmable
circuitry 304.

Control registers 354 may be configured to control vari-
ous, if not most, aspects of processor system 302. One or
more commands and/or configuration parameters may be
written to control registers 354 to control or regulate opera-
tion of processor system 302. For example, circuits within
programmable circuitry 304 may write to control registers
354 through an interface such as interface 356B, to be
described herein in further detail. Control registers 354
control or regulate functions such as enabling particular
circuit blocks, controlling intellectual property (IP) enable
resets, setting clock frequencies generated by clock unit 326,
specifying [/O drive strength, the state of FMIO interface
352 in terms of which signals are routed through to pro-
grammable circuitry 304, and other system level functions.
Control registers 354 regulate additional functions such as
powering down processor system 302, powering down or
deactivating particular interfaces of processor system 302
independently, or the like. Control registers 354 may be
accessed through a bus such as, for example, an APB (not
shown), that couples control registers 354 to core switch
336. Control registers 354 further may be written during
loading of a configuration bitstream for IC 300 specifying a
circuit design inclusive of the processor system configura-
tion.

Processor system 302 may also include one or more
interfaces 356, depicted as interfaces 356A-356D, that
couple directly with programmable circuitry 304. In one
example, one or more or all of interfaces 356 may be
implemented in accordance with the AMBA AXI Protocol
Specification (AXI) as published by ARM. For example,
each of interfaces 356 may be implemented in conformance
with the AMBA AXI Protocol Specification v. 3.0, which is
incorporated herein by reference in its entirety. In general,
AXI is a high performance, high frequency interface that is
suitable for submicron interconnect.

Referring again to FIG. 3, interfaces 356 A and 356B, for
example, each may be implemented to provide two, 32-bit
channels that couple programmable circuitry 304 with core
switch 336. Interface 356A may be implemented as a
general-purpose master interface. Interface 256A, for
example, may be used to perform general purpose transfers
of data from processor system 302 and/or a DMA controller
therein, to programmable circuitry 304. Interface 3568 can
be implemented as a general-purpose slave interface. For
example, interface 356B can be used to perform general
purpose data transfer between processor system 302 and
programmable circuitry 304.

Through interfaces 356A-356B and core switch 336,
circuits implemented within programmable circuitry 304
may access various ones of I/O devices 340, 342, 346, and
348. Through interfaces 356 A and/or 356B, in combination
with core switch 336, circuits within programmable circuitry
304 further may access OCM 322 directly and off-chip
memory through memory controller 328, etc.

Interface 356C may be implemented as a 64-bit slave
interface that couples programmable circuitry 304 directly
with core complex 306 and, more particularly, SCU 318.
Through interface 356C and SCU 318, circuits implemented
within programmable circuitry 304 are provided with direct
access to the L1 cache within each of cores 308 and 310,
1RQ 316, 1.2 cache 320, and OCM 322. Accordingly, circuits

10

15

20

25

30

35

40

45

50

55

60

65

10

within programmable circuitry 304 can read and/or write to
such memories and detect interrupts generated or asserted
within core complex 306. For example, interface 356C may
provide coherent access to core complex 306 that is suitable
for use by circuits functioning as co-processors. In illustra-
tion, a soft processor implemented within programmable
circuitry 304 in the form of user circuitry 380 can commu-
nicate with processor system 302 via interface 356C.

Programmable circuitry 304 is configurable to directly
detect interrupts from 1/O devices 340, 342, 346, and 348, or
to detect interrupts from IRQ 316. It should be appreciated
that IRQ 316 allows programmable circuitry 304 to detect
processor-specific or processor-generated interrupts that
originate within core complex 306. Signal 390 further may
represent one or more interrupts from programmable cir-
cuitry 304 that may be provided to IRQ 316 as ports or
signals and/or one or more copies of interrupts from pro-
cessor system 302, and in particular from core complex 306,
that may be provided to programmable circuitry 304 as ports
or signals.

Interface 356D may be implemented to provide a plural-
ity, e.g., four, 64-bit slave interfaces. Interface 356D may be
used to exchange large amounts of data between processor
system 302 and circuits implemented within programmable
circuitry 304 efficiently. As shown, interface 356D provides
circuits implemented within programmable circuitry 304
with access to OCM 322 via memory switch 338 and access
to off-chip memory via memory switch 338 and memory
controller 328.

In addition, processor system 302 may include a proces-
sor system voltage detector 392. Processor system voltage
detector 392 monitors incoming voltage sources from a
power supply depicted as signal 394. Responsive to deter-
mining that the voltage of signal 394 meets a predetermined
voltage level, processor system voltage detector 392 enables
one or more other components by issuing control signals
(not shown). For example, responsive to determining that
the voltage of signal 394 is at least a minimum voltage level,
processor system voltage detector 392 enables one or more
IOBs of IC 300. In another example, responsive to deter-
mining that the voltage of signal 394 meets a minimum
voltage level, processor system voltage detector 392 can
enable one or more level shifters collectively shown as level
shifting circuitry 396.

IC 300 may include level shifting circuitry 396 to facili-
tate transfer of signals between processor system 302 and
programmable circuitry 304. Level shifting circuitry 396
helps to electrically isolate processor system 302 from
programmable circuitry 304 and is configured to convert
signals at a first voltage level to signals at a second voltage
level. In some cases, the first and second voltage levels can
be different voltage values. For example, in some cases,
processor system 302 may operate using a power signal
having a different voltage potential than the power signal
provided to programmable circuitry 304. In other cases,
processor system 302 may receive one or more power
signals that have, or are intended to have, a same voltage
potential as power signals provided to programmable cir-
cuitry 304. The power signals, however, may be indepen-
dently controlled, resulting in two different power domains
despite the similarity or sameness of the voltage potentials
of'the power signals. The independence of the power signals
can cause small variations in the voltage potential of the
power signals provided to processor system 302 as com-
pared to the power signals provided to programmable cir-
cuitry 304. Level shifting circuitry 396 allows processor
system 302 to function as one power domain and program-

US 9,436,785 Bl

11

mable circuitry 304 to function as a different and indepen-
dent power domain, thereby allowing programmable cir-
cuitry 304 to be powered on and power off independently of
processor system 302, e.g., while processor system 302
remains powered on and operational.

To account for the potential variations in the power
signals and also to support the ability to power cycle
programmable circuitry 304 independently of processor
system 302, signals crossing between processor system 302
and programmable circuitry 304 may be passed through
level shifting circuitry 396. Though illustrated as a single
block, it should be appreciated that each of the various
interfaces described, e.g., FMIO interface 352, trace inter-
face 348B, interfaces 356A-356D, processor configuration
access port (PCAP) 358, and any other signals such as clock
signals and DMA signals, may include, or pass through,
level shifters represented by level shifting circuitry 396.
Level shifting circuitry 396 ensures that voltage levels for
signals that propagate between processor system 302 and
programmable circuitry 304 are matched.

Processor system 302 further includes PCAP 358. As
shown, PCAP 358 may be coupled to a configuration con-
troller 360 and a system monitor block 362, both located
within programmable circuitry 304. Though not shown,
PCAP 358 may be coupled core switch 336 allowing pro-
cessor system 302 to receive configuration data via any of
the [/O devices 340-348 and 328, for use in configuring
programmable circuitry 304.

Programmable circuitry 304 may be implemented to
include one or more programmable circuit blocks that can be
coupled together using programmable interconnect circuitry.
The programmable circuit blocks and the programmable
interconnect circuitry can be configured to implement one or
more different physical circuits, e.g., user circuitry 380,
based upon configuration data loaded into IC 300. It should
be appreciated that programmable circuitry 304, with the
exception of various hard-wired circuits that may be imple-
mented therein, is not operational or functional until con-
figuration data is loaded within configuration memory caus-
ing physical circuitry to be implemented within
programmable circuitry 304. As noted, the configuration
data that is loaded specifies connectivity of user circuitry
380 to one or more signals of FMIO interface 352, interrupts
390, interfaces 356, and the like.

Configuration controller 360 and system monitor block
362 may be implemented in the form of hard-wired circuitry.
Configuration controller 360 is responsible for writing con-
figuration data to configuration memory cells thereby physi-
cally implementing circuitry specified by the configuration
data within programmable circuitry 304. In one aspect,
configuration controller 360 may write a processor system
configuration to control registers 354. System monitor block
362 performs functions such as analog-to-digital conversion,
voltage monitoring, current monitoring, and/or temperature
monitoring.

As noted, programmable circuitry 304 may also be con-
figured to implement one or more I/O devices in the form of
hard-wired circuits. For example, a JTAG interface 364, one
or more MGTs 366A-366D, a Peripheral Component Inter-
connect Express (PCle) interface 368, an Internal Configu-
ration Access Port (ICAP) 370, and a security port 372 may
be included as hard-wired circuits despite being located
within programmable circuitry 304 of IC 300. The various
1/0O devices within programmable circuitry 304 illustrate
exemplary interfaces that may be implemented and are not
intended to be restrictive or limiting of the inventive
arrangements described within this disclosure.

20

35

40

45

55

12

For example, configuration data may be loaded into IC
300 and received by configuration controller 360. In one
aspect, configuration data may be received through proces-
sor system 302, which can control the configuration process
of IC 300. Configuration controller 360 may load the con-
figuration data received from processor system 302 via
PCAP 358 within configuration memory (not shown) of IC
300. Different physical circuits such as user circuitry 380
may be implemented or formed within programmable cir-
cuitry 304 as specified by the particular configuration data
loaded into the configuration memory of IC 300. It should be
appreciated that the loading of configuration data in this
manner, due to the use of hard-wired circuitry, requires no
initial configuration of programmable circuitry 304. Circuits
implemented within programmable circuitry 304, in conse-
quence of loading configuration data, though physical cir-
cuits, typically are referred to as “soft” in that the circuitry
is formed within programmable circuitry 304 rather than
being hard-wired or otherwise fixed within IC 300, which is
to be distinguished from processor system 302.

In one aspect, programmable circuitry 304 is imple-
mented as a field programmable gate array (FPGA) or a
portion thereof. An FPGA typically includes an array of
programmable tiles. These programmable tiles may include,
for example, input/output blocks (IOBs), configurable logic
blocks (CLBs), dedicated random access memory blocks
(BRAM), multipliers, digital signal processing blocks
(DSPs), processors, clock managers, delay lock loops
(DLLs), and so forth.

Each programmable tile typically includes both program-
mable interconnect circuitry and programmable logic cir-
cuitry. The programmable interconnect circuitry typically
includes a large number of interconnect lines of varying
lengths interconnected by programmable interconnect points
(PIPs). The programmable logic circuitry implements the
logic of a user design using programmable elements that
may include, for example, function generators, registers,
arithmetic logic, and so forth.

The programmable interconnect and programmable logic
circuitries are typically programmed by loading a stream of
configuration data into internal configuration memory cells
that define how the programmable elements are configured.
The configuration data can be read from memory (e.g., from
an external PROM) or written into the FPGA by an external
device. The collective states of the individual memory cells
then determine the function of the FPGA.

As noted, FIG. 3 is illustrative of an SOC type of IC. In
order to operate correctly and as intended for a given circuit
design, the numerous circuit blocks within processor system
302 must be configured. As apparent from the complexity of
processor system 302, each circuit block has numerous
configuration parameters set through control registers 354,
which must store the correct values for configuration param-
eters for each of the various circuit blocks described to
function properly.

FIG. 4 is a flow chart illustrating an exemplary method
400 of determining a processor system configuration for an
SOC. Method 400 may be implemented by a data processing
system such as system 105 described herein executing EDA
application 255. The system, in implementing method 400,
determines a configuration for the processor system of an
SOC. The processor system configuration specifies values
that are written, or stored, within various control registers of
the processor system. The values, once written into the
control registers, define the behavior of particular circuit
blocks implemented within the processor system of the
SOC.

US 9,436,785 Bl

13

Method 400 may begin in block 405 where the system
receives a user input. The user input may specify a particular
circuit block of the processor system of an SOC for enable-
ment. For example, the user input may specify that the
memory controller is to be enabled, that a USB /O device
is to be enabled, or the like. In another example, the user
input may specify a high level feature desired for the circuit
design such as the use of DDR memory, or the like.

In block 410, the system determines a top level preset
according to the received user input. For example, respon-
sive to determining that the user input specifies enablement
of the memory controller, the system determines a top level
preset for the memory controller. In another example,
responsive to determining that the user input specifies
enablement of a USB I/O device, the system determines a
top level preset for the USB 1/O device.

In one aspect, the top level preset is a root node of a set
of hierarchically ordered presets for the selected circuit
block. Each top level preset represents a feature of the SOC,
e.g., a circuit block, requested by the user. Beneath the top
level preset, the hierarchy is formed of a plurality of
intermediate presets. The system traverses the hierarchy of
presets from the top level preset and ultimately converges to
the low level presets of the hierarchy, which specity values
for specific control registers of the circuit block(s) requested
by the user. The system automatically determines the nec-
essary values for the control registers of the circuit block(s)
based upon the user requested feature(s). By converging to
the values in the hierarchy, the user may provide far fewer
inputs to the system than would otherwise be required.

It should be appreciated that a given hierarchy for one
circuit block may include intermediate presets and values for
control registers of circuit blocks other than the particular
circuit block requested by the user in block 405. For
example, a hierarchy for a particular /O device may require
values for writing to the control registers of the clock unit
320. Similarly, the I/O device may require values for writing
to the control registers of the multiplexer 350. The interme-
diate presets in a given path from the top level preset to the
low level presets are compatible with one another to imple-
ment an overall implementation for the circuit block.

In block 415, the system determines selected intermediate
preset(s) from the plurality of hierarchically ordered presets
for the circuit block. The system determines the intermediate
presets by applying one or more rules to the received user
inputs. In one aspect, each preset, whether a top level preset
or an intermediate preset, within the hierarchy may be
associated with one or more rules. The system applies the
rules to the received user input to determine a path through
the hierarchy of presets.

In one aspect, the rules attached to intermediate presets
specify any associated values and/or calculations for deter-
mining further presets and/or parameters of the circuit block.
The rules, for example, may define the limitations of the
circuit block in terms of what is allowed and what is not
allowed for the processor configuration. The rules further
may define contingencies such as if the user desires option
“X,” then option “Y” must also be selected. Upon evaluation
of the calculations specified by the rules and determining an
output, one or more next intermediate preset(s) may be
selected or chosen.

In some cases, presets may be directly associated with one
or more other presets at a next level of the hierarchy without
having to execute a rule. For example, a top level preset may
be associated with one or more fixed intermediate level
presets that are located in the hierarchy without execution of

40

45

55

14

a rule to select among one of a plurality of potentially
alternate paths through the hierarchy.

Inblock 420, the system determines whether a conflict has
occurred. A conflict occurs when the system selects an
intermediate preset of the hierarchy that is already utilized
by another, different circuit block configuration. For
example, consider the case in which the user selected circuit
block is an 1/O device. The I/O device requires access to
particular I/O pins from multiplexer 350 that are already
utilized by another circuit block. In that case, the system
determines that the needed I/O pins are already used to
support a different circuit block and are unavailable for the
selected I/O device. The system is unable to traverse the
hierarchy any further to reach the leaf node(s) since the
needed intermediate preset, i.e., the intermediate preset for
using particular I/O pins from multiplexer 350, is unavail-
able and in use for another circuit block.

If the system detects a conflict, method 400 continues to
block 425. In block 425, the system outputs a notification of
the contflict. If the system does not detect a conflict, method
400 proceeds to block 430.

In block 430, the system automatically determines low
level presets for the circuit block according to the selected
intermediate presets of the hierarchy of presets. The rules are
applied, or direct parent-child relationships among presets
are evaluated, by the system to determine next intermediate
presets until each path being taken through the hierarchy
leads to one or more low level presets specitying control
register values.

In block 435, the system determines whether the user
wishes to configure another circuit block. If so, method 400
loops back to block 405 to continue processing. If not,
method 400 proceeds to block 440. In block 440, the system
optionally loads the low level presets into the SOC, thereby
configuring the user specified circuit blocks for operation. In
one aspect, the system may load the low level presets within
the SOC independently of a circuit design. For example, the
system may load the circuit design, or the portion of the
circuit design not including the already loaded low level
presets, subsequent to loading the low level presets.

It should be appreciated, however, that block 440 repre-
sents one of a plurality of different techniques for outputting
low level presets. Another example of outputting the low
level presets may include the system including the low level
presets within a user-defined circuit design. The circuit
design, including the low level presets, may be specified as
configuration data or a configuration bitstream. The system
may load the circuit design inclusive of the low level presets
within the SOC, thereby configuring the user specified
circuit blocks for operation.

In another example, the system may store the low level
presets within a circuit design and store the circuit design
within memory elements, e.g., within local memory and/or
a bulk storage device, of the system. In still another
example, the processor system configuration, e.g., the low
level presets, may be stored within memory elements of the
system for subsequent recall and/or use including use and/or
inclusion in other circuit designs.

FIG. 5 is a block diagram illustrating a portion of an
exemplary preset hierarchy 500. In the example of FIG. 5,
the user provides an initial input, from which the system
determines a top level preset 505. In this example, top level
preset 505 has a plurality of intermediate presets that are
predetermined as child presets. As pictured, the predeter-
mined intermediate presets for top level preset 505 are
intermediate presets 510, 515, and 520. Intermediate presets

US 9,436,785 Bl

15
510, 515, and 520 may be referred to as “child intermediate
presets” with top level preset 505 being the parent.

Both intermediate presets 515 and 520 are associated with
arule 525. In the example of FIG. 5, rule 525 may state that
any time preset A and/or preset C, corresponding to inter-
mediate presets 515 and 520, change, rule 525 is triggered
and, as such, evaluated, or executed, anew by the system. It
should be appreciated that rule 525 may be associated with
one or more other intermediate and/or top level presets. For
example, rule 525, as with any other rule of the preset data,
may be implemented as a module or a generic module that
may be invoked from one or more other nodes in preset
hierarchy 500 or from one or more other nodes in other
preset hierarchies. In any case, rule 525 receives preset A
and preset C as inputs. Execution of rule 525 generates an
output specifying “preset M,” which is used to select inter-
mediate preset 530. Intermediate present 530 is a child of
intermediate presets 515 and 520. Rule 525 further may
specify one or more other low level SOC settings as illus-
trated in low level preset 535. Low level preset 535 is also
a child of intermediate presets 515 and 520. Intermediate
presets 515 and 520 are parents of intermediate preset 530
and low level preset 535.

In one aspect, a rule, which may be associated with one
or more presets in a hierarchy or hierarchies, specifies one
or more particular nodes at a next, deeper level of the
hierarchy being traversed, e.g., a child preset. The rule
further may specify a value or values for the next level nodes
specified. The value(s) of the rule may be determined from
the particular preset and/or preset value with which the rule
is associated that is the parent node to the next level nodes
indicated by the rule.

Intermediate preset 510 also may be associated with one
or more rules 540. In the example shown, rules 540 receive
preset B as input and determines the next level intermediate
preset based upon the value of preset B. For purposes of
illustration, the system may traverse from intermediate pre-
set 510 to any of the intermediate presets within group 545
of intermediate presets formed of intermediate presets 550,
555, and 560. Intermediate preset 510 is a parent to child
intermediate presets 550, 555, and 560. Rule 540 illustrates
the case where the system determines a child intermediate
preset, i.e., intermediate preset 550, from a plurality of
candidate child intermediate presets of the parent interme-
diate preset according to execution of a rule associated with
the parent intermediate preset.

For example, when preset B is equal to “Pin 25, rule 540
indicates that the output is preset D with a value of “001.”
Accordingly, the system traverses to intermediate preset
550. If the value of preset B is “Pin 20,” then the system
traverses to intermediate preset 555, where the value of
preset D is set to “010.” If the value of preset B is “Pin 14,”
then the system traverse to intermediate preset 560, where
the value of preset D is set to “011.” Each of intermediate
presets 550, 555, and 560 is associated with a low level
preset. For example, intermediate preset 550 is associated
with low level preset 565 specifying a particular register
setting. Intermediate preset 555 is associated with low level
preset 570 specifying a particular and different register
setting. Finally, intermediate preset 560 is associated with
low level preset 575 specifying yet another different register
setting.

Accordingly, given an initial user input, the system is able
to traverse preset hierarchy 500. After moving from top level
setting 505 to intermediate presets 510, 515, and 520 having
predetermined values, the system must determine and/or
lookup values for the next level intermediate presets and

10

15

20

25

30

35

40

45

50

55

60

65

16

iterate by applying associated rules for nodes traversed in
the hierarchy until a low level preset is reached in each path
that the system takes through preset hierarchy 500.

FIG. 6 is a block diagram illustrating a portion of an
exemplary preset hierarchy 600. FIG. 6 illustrates the series
of presets selected from the hierarchy responsive to a user
selection of a particular feature that is desired for inclusion
in a circuit design. In this example, the system selects a top
level preset 605 responsive to receipt of a user input select-
ing “DDR” functionality.

Top level preset 605 is associated with memory presets
610. Memory presets 610 include intermediate presets 615,
620, and 625. Intermediate preset 615 indicates a clock
frequency of 553 MHz. Intermediate preset 620 indicates a
memory type of “LPDDR2”. Intermediate preset 625 indi-
cates a multiplexer I/O preset of “Memory 10s,” which may
be further elaborated in the next level intermediate presets.

Intermediate preset 615 is linked with clock presets 630.
Clock presets 630 include intermediate presets 635 and 640.
Intermediate preset 635 specifies a PLL preset correspond-
ing to “DDR.” Intermediate preset 640 specifies a divisor
present for the PLL for the clock.

Both intermediate presets 615 and 620 are linked with
memory part presets 645. Memory part presets 645 include
intermediate presets 650, 655, and 660. Intermediate preset
650 specifies a particular part number of the DDR memory
that is to be used. Intermediate preset 655 specifies a speed
of the LPDDR2 memory that is to be used. Intermediate
preset 660 specifies a data width of the particular memory
that is to be used.

Each of presets 615, 620, and 625 is also linked with
multiplexer 10 presets 665. Multiplexer 10 presets 665
includes intermediate preset 670 and intermediate preset
675. Intermediate preset 670 specifies that /O addresses
AS56 through D45 are to be used by the memory controller
in communicating with the DDR memory. Preset 675 speci-
fies that addresses D34 through AB16 are also to be used.

For purposes of illustration, each of intermediate presets
635, 640, 650, 655, 660, 670, and 675 may be linked with
a low level preset (not shown). The low level preset may be
a leaf child node of each of the aforementioned intermediate
presets. Each low level present may specify one or more
values, e.g., bits, that may be loaded into control registers of
the processor system to implement the user requested func-
tionality, which is the inclusion of DDR memory in this case.
The values specified by the low level presets configure the
processor system for operation using DDR memory.

FIG. 7 is a block diagram illustrating a conflict between
portions of two exemplary preset hierarchies. FIG. 7 illus-
trates a portion of a first hierarchy for an Ethernet port
having a top level preset of 705. FIG. 7 further illustrates a
portion of a second hierarchy for a USB port having a top
level preset of 750. In this example, the user has provided
user inputs to enable the Ethernet port and the USBO port.

Referring to the first hierarchy, top level preset 705 is
associated with intermediate preset 710. Intermediate preset
710, which defines the clock frequency for the Ethernet port,
is associated with clock presets 715. Clock presets 715
include an intermediate preset 720 defining a PLL preset for
the clock and intermediate preset 725 defining divisor pre-
sets for the PLL for the clock.

Referring to the second hierarchy, top level preset 750 is
associated with intermediate preset 755. Intermediate preset
755, which defines the clock frequency for the USBO port,
is associated with clock presets 760. Clock presets 760
include an intermediate preset 765 defining a PLL preset for

US 9,436,785 Bl

17
the clock and intermediate preset 770 defining divisor pre-
sets for the PLL for the clock.

Each of top level presets 705 and 750 is associated with
multiplexer 1O presets 730. More particularly, each of top
level presets 705 and 750 is associated with an intermediate
preset defining the same IOs. Top level preset 705 is
associated with intermediate preset 735 indicating that the
Ethernet port will utilize IOs 28 through 39. Top level preset
750 is associated with intermediate preset 740 indicating
that USBO port also will utilize 1Os 28 through 39. Since the
two ports may not utilize the same physical 1Os of the IC,
the system detects a conflict between top level presets 705
and 750 since both attempt to use the same intermediate
preset with the same value. The system determines that
intermediate preset 735 for the Ethernet port utilizes a same
hardware resource of the SOC as intermediate preset 740 for
the USBO port. Accordingly, the system outputs a notifica-
tion 745 of the conflict.

FIGS. 8-1 through 8-5, taken together, illustrate an
example of a preset hierarchy 800 specified in eXtensible
Markup Language (XML) format.

In accordance with the inventive arrangements disclosed
herein, a user is guided through configuration of circuit
blocks of a processor system of an SOC using one or more
sets of hierarchically ordered presets. Responsive to a user
input selecting a particular circuit block and/or feature of the
processor system to be enabled, the system automatically
selects a top level present and begins to traverse a preset
hierarchy resulting in the determination of low level
preset(s) that may be loaded into control registers of the
processor system effectively implementing the user desired
processor system configuration. By using a hierarchy and
rules for determining paths through the hierarchy, a user may
configure a processor system with significantly fewer inputs
than is otherwise required. Further, conflicting settings
among different subsystems of the processor system may be
avoided.

For purposes of explanation, specific nomenclature is set
forth to provide a thorough understanding of the various
inventive concepts disclosed herein. The terminology used
herein, however, is for the purpose of describing particular
aspects of the inventive arrangements only and is not
intended to be limiting.

The terms “a” and “an,” as used herein, are defined as one
or more than one. The term “plurality,” as used herein, is
defined as two or more than two. The term “another,” as used
herein, is defined as at least a second or more. The term
“coupled,” as used herein, is defined as connected, whether
directly without any intervening elements or indirectly with
one or more intervening elements, unless otherwise indi-
cated. Two elements also can be coupled mechanically,
electrically, or communicatively linked through a commu-
nication channel, pathway, network, or system.

As defined herein, the term “automatically” means with-
out user intervention. As defined herein, the term ‘“user”
means a human being. The term “and/or” as used herein
refers to and encompasses any and all possible combinations
of one or more of the associated listed items. It will be
further understood that the terms “includes” and/or “includ-
ing,” when used in this disclosure, specify the presence of
stated features, integers, steps, operations, elements, and/or
components, but do not preclude the presence or addition of
one or more other features, integers, steps, operations,
elements, components, and/or groups thereof. It will also be
understood that, although the terms first, second, etc. may be
used herein to describe various elements, these elements

25

40

45

55

18

should not be limited by these terms, as these terms are only
used to distinguish one element from another.

The term “if” may be construed to mean “when,” “upon,”
“in response to determining,” “in response to detecting,”
“responsive to determining,” or “responsive to detecting,”
depending on the context. Similarly, the phrase “if it is
determined” or the phrase “if [a stated condition or event] is
detected” may be construed to mean “upon determining,”
“in response to determining,” “responsive to determining,”
“upon detecting [the stated condition or event],” “in
response to detecting [the stated condition or event],” or
“responsive to detecting [the stated condition or event],”
depending on the context.

One or more aspects described within this disclosure can
be realized in hardware or a combination of hardware and
software. One or more aspects can be realized in a central-
ized fashion in one system or in a distributed fashion where
different elements are spread across several interconnected
systems. Any kind of data processing system or other
apparatus adapted for carrying out at least a portion of the
methods described herein is suited.

One or more aspects further can be embedded in a
computer program product, which includes all the features
enabling the implementation of the methods described
herein. The computer program product includes a computer-
readable data storage medium. As defined herein, the term
“computer-readable storage medium” means a storage
medium that contains or stores program code for use by or
in connection with an instruction execution system, appa-
ratus, or device. As defined herein, a “computer-readable
storage medium” is non-transitory and, as such, is not a
transitory propagating signal per se. Examples of a com-
puter-readable storage medium may include, but are not
limited to, optical media, magnetic media, magneto-optical
media, computer memory such as random access memory, a
bulk storage device, e.g., hard disk, or the like.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer pro-
gram products according to various aspects of the inventive
arrangements disclosed herein. In this regard, each block in
the flowchart or block diagrams may represent a module,
segment, or portion of code, which includes one or more
executable instructions for implementing the specified logi-
cal function(s). It will also be noted that each block of the
block diagrams and/or flowchart illustration, and combina-
tions of blocks in the block diagrams and/or flowchart
illustration, can be implemented by special purpose hard-
ware-based systems that perform the specified functions or
acts, or combinations of special purpose hardware and
computer instructions.

In one aspect, the blocks in the flow chart illustration may
be performed in increasing numeric order corresponding to
the numerals in the various blocks. In other aspects, the
blocks may be performed in an order that is different, or that
varies, from the numerals in the blocks. For example, two or
more blocks shown in succession may be executed substan-
tially concurrently. In other cases, two or more blocks may
sometimes be executed in the reverse order, depending upon
the functionality involved. In still other cases, one or more
blocks may be performed in varying order with the results
being stored and utilized in subsequent or other blocks that
do not immediately follow.

The terms “computer program,” “software,” “applica-
tion,” “computer-usable program code,” “program code,”
“executable code,” variants and/or combinations thereof, in
the present context, mean any expression, in any language,

29 <

2 < 2 <

US 9,436,785 Bl

19

code or notation, of a set of instructions intended to cause a
data processing system to perform a particular function
either directly or after either or both of the following: a)
conversion to another language, code, or notation; b) repro-
duction in a different material form. For example, program
code can include, but is not limited to, a subroutine, a
function, a procedure, an object method, an object imple-
mentation, an executable application, an applet, a servlet, a
source code, an object code, a shared library/dynamic load
library and/or other sequence of instructions designed for
execution on a computer system.

Thus, throughout this disclosure, statements utilizing
terms such as “processing” or “computing” or “calculating”
or “determining” or “displaying” or the like, refer to the
action and processes of a data processing system, e.g., a
computer system, or similar electronic computing device,
that manipulates and transforms data represented as physical
(electronic) quantities within the computer system’s regis-
ters and/or memories into other data similarly represented as
physical quantities within the computer system memories
and/or registers or other such information storage, transmis-
sion or display devices.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the
claims below are intended to include any structure, material,
or act for performing the function in combination with other
claimed elements as specifically claimed.

A method includes receiving a user input selecting a first
circuit block of an SOC for enablement, determining, using
aprocessor, a first top level preset according to the user input
for the first circuit block, and determining selected interme-
diate presets from a plurality of hierarchically ordered
presets for the first circuit block. The method also includes
automatically determining low level presets for the first
circuit block according to the selected intermediate presets
for the first circuit block, and outputting the low level
presets.

Outputting the low level presets may comprise loading the
low level presets into the SOC.

The method may also include detecting a conflict between
at least one selected intermediate preset for the first circuit
block and at least one selected intermediate preset for a
second circuit block. Detecting the conflict may include
determining that the at least one selected intermediate preset
for the first circuit block utilizes a same hardware resource
of the SOC as the at least one selected intermediate preset
for the second circuit block. A notification that the first
circuit block is not compatible with the second circuit block
may be provided.

In one aspect, the first circuit block comprises a hardware
resource within a processor system of the SOC.

In another aspect, the intermediate presets are associated
with rules. Determining selected intermediate presets may
include determining a child intermediate preset from a
plurality of candidate child intermediate presets of a parent
intermediate preset within the plurality of hierarchically
ordered presets, according to execution of a rule associated
with the parent intermediate preset.

A system includes a processor programmed to initiate
executable operations. The executable operations include
receiving a user input selecting a first circuit block of an
SOC for enablement, determining a first top level preset
according to the user input for the first circuit block, and
determining selected intermediate presets from a plurality of
hierarchically ordered presets for the first circuit block. The
executable operations also include automatically determin-
ing low level presets for the first circuit block according to

10

15

20

25

30

35

40

45

50

55

60

65

20

the selected intermediate presets for the first circuit block,
and outputting the low level presets.

Outputting the low level presets may comprise loading the
low level presets into the SOC.

The processor may also be programmed to initiate execut-
able operations including detecting a conflict between at
least one selected intermediate preset for the first circuit
block and at least one selected intermediate preset for a
second circuit block. Detecting the conflict may include
determining that the at least one selected intermediate preset
for the first circuit block utilizes a same hardware resource
of the SOC as the at least one selected intermediate preset
for the second circuit block. The processor may also be
programmed to initiate executable operations including pro-
viding a notification that the first circuit block is not com-
patible with the second circuit block.

In one aspect, the first circuit block comprises a hardware
resource within a processor system of the SOC.

In another aspect, the intermediate presets are associated
with rules. Determining selected intermediate presets may
include determining a child intermediate preset from a
plurality of candidate child intermediate presets of a parent
intermediate preset within the plurality of hierarchically
ordered presets, according to execution of a rule associated
with the parent intermediate preset.

A non-transitory computer-readable storage medium has
instructions stored thereon which, when executed by a
processor, perform a method. The method includes receiving
a user input selecting a first circuit block of an SOC for
enablement, determining, using the processor, a first top
level preset according to the user input for the first circuit
block, and determining selected intermediate presets from a
plurality of hierarchically ordered presets for the first circuit
block. The method further includes automatically determin-
ing low level presets for the first circuit block according to
the selected intermediate presets for the first circuit block,
and outputting the low level presets.

Outputting the low level presets may comprise loading the
low level presets into the SOC.

The method may also include detecting a conflict between
at least one selected intermediate preset for the first circuit
block and at least one selected intermediate preset for a
second circuit block. Detecting the conflict may include
determining that the at least one selected intermediate preset
for the first circuit block utilizes a same hardware resource
of the system-on-chip as the at least one selected interme-
diate preset for the second circuit block. The method may
include providing a notification that the first circuit block is
not compatible with the second circuit block.

In one aspect, the intermediate presets are associated with
rules. Determining selected intermediate presets may
include determining a child intermediate preset from a
plurality of candidate child intermediate presets of a parent
intermediate preset within the plurality of hierarchically
ordered presets, according to execution of a rule associated
with the parent intermediate preset.

The features described within this disclosure can be
embodied in other forms without departing from the spirit or
essential attributes thereof. Accordingly, reference should be
made to the following claims, rather than to the foregoing
disclosure, as indicating the scope of such features and
implementations.

What is claimed is:

1. A method, comprising:

receiving a user input selecting a first circuit block of a
system-on-chip for enablement;

determining, using a processor, a first top level preset
according to the user input for the first circuit block;

US 9,436,785 Bl

21

determining selected intermediate presets from a plurality
of hierarchically ordered presets for the first circuit
block;
automatically determining low level presets for the first
circuit block according to the selected intermediate
presets for the first circuit block; and
configuring the system-on-chip by loading control regis-
ter values specified by the low level presets into a
control register of a processor system of the system-
on-chip.
2. The method of claim 1, further comprising:
detecting a conflict between at least one selected inter-
mediate preset for the first circuit block and at least one
selected intermediate preset for a second circuit block
indicating that the first circuit block and the second
circuit block are not compatible.
3. The method of claim 2, wherein detecting the conflict
comprises:
determining that the at least one selected intermediate
preset for the first circuit block utilizes a same hard-
ware resource of the system-on-chip as the at least one
selected intermediate preset for the second circuit
block.
4. The method of claim 3, further comprising:
providing a notification that the first circuit block is not
compatible with the second circuit block.
5. The method of claim 1, wherein the configuring the
system-on-chip comprises:
including the control register values within a circuit
design specified as a configuration bitstream provided
to the system-on-chip.
6. The method of claim 1, wherein:
the intermediate presets are associated with rules; and
determining the selected intermediate presets comprises
determining a child intermediate preset from a plurality
of candidate child intermediate presets of a parent
intermediate preset within the plurality of hierarchi-
cally ordered presets, according to execution of a rule
associated with the parent intermediate preset.
7. A system, comprising:
a processor programmed to initiate executable operations
comprising:
receiving a user input selecting a first circuit block of a
system-on-chip for enablement;
determining a first top level preset according to the user
input for the first circuit block;
determining selected intermediate presets from a plurality
of hierarchically ordered presets for the first circuit
block;
automatically determining low level presets for the first
circuit block according to the selected intermediate
presets for the first circuit block; and
configuring the system-on-chip by loading control regis-
ter values specified by the low level presets into a
control register of a processor system of the system-
on-chip.
8. The system of claim 7, wherein the processor is further
programmed to initiate executable operations comprising:
detecting a conflict between at least one selected inter-
mediate preset for the first circuit block and at least one
selected intermediate preset for a second circuit block
indicating that the first circuit block and the second
circuit block are not compatible.
9. The system of claim 8, wherein detecting the conflict
comprises:
determining that the at least one selected intermediate
preset for the first circuit block utilizes a same hard-

5

—_
<

15

20

25

30

40

45

50

55

60

22

ware resource of the system-on-chip as the at least one
selected intermediate preset for the second circuit
block.

10. The system of claim 9, wherein the processor is
further programmed to initiate executable operations com-
prising:

providing a notification that the first circuit block is not

compatible with the second circuit block.

11. The system of claim 7, wherein the configuring the
system-on-chip comprises:

including the control register values within a circuit

design specified as a configuration bitstream provided
to the system-on-chip.

12. The system of claim 7, wherein:

the intermediate presets are associated with rules; and

determining the selected intermediate presets comprises

determining a child intermediate preset from a plurality
of candidate child intermediate presets of a parent
intermediate preset within the plurality of hierarchi-
cally ordered presets, according to execution of a rule
associated with the parent intermediate preset.

13. A non-transitory computer-readable storage medium
having instructions stored thereon which, when executed by
a processor, perform a method comprising:

receiving a user input selecting a first circuit block of a

system-on-chip for enablement;
determining, using the processor, a first top level preset
according to the user input for the first circuit block;

determining selected intermediate presets from a plurality
of hierarchically ordered presets for the first circuit
block;

automatically determining low level presets for the first

circuit block according to the selected intermediate
presets for the first circuit block; and

configuring the system-on-chip by loading control regis-

ter values specified by the low level presets into a
control register of a processor system of the system-
on-chip.

14. The non-transitory computer-readable storage
medium of claim 13, wherein the method further comprises:

detecting a conflict between at least one selected inter-

mediate preset for the first circuit block and at least one
selected intermediate preset for a second circuit block
indicating that the first circuit block and the second
circuit block are not compatible.

15. The non-transitory computer-readable storage
medium of claim 14, wherein detecting the conflict com-
prises:

determining that the at least one selected intermediate

preset for the first circuit block utilizes a same hard-
ware resource of the system-on-chip as the at least one
selected intermediate preset for the second circuit
block.

16. The non-transitory computer-readable storage
medium of claim 15, wherein the method further comprises:

providing a notification that the first circuit block is not

compatible with the second circuit block.

17. The non-transitory computer-readable
medium of claim 13, wherein:

the intermediate presets are associated with rules; and

determining the selected intermediate presets comprises

determining a child intermediate preset from a plurality
of candidate child intermediate presets of a parent
intermediate preset within the plurality of hierarchi-
cally ordered presets, according to execution of a rule
associated with the parent intermediate preset.

storage

#* #* #* #* #*

